On the Number of Local Best Approximations by Exponential Sums

RÜdiger Verfürth
Institut für Mathematik, Ruhr-Universität Bochum, D-4630 Bochum I, West Germany
Communicated by G. Meinardus
Received March 17, 1981

Let E_{n} denote the set of exponential sums of degree $\leqslant n$. According to D. Braess the maximal number of local best approximations in $E_{n}, n \geqslant 4$, is at most $\frac{3}{2}(n-1)!$. It is proven that the asymptotic growth of this bound is correct by constructing functions which have at least $\max \left\{\frac{1}{2} n^{2}-\frac{3}{2} n+3,2^{(2 / 3) n} / 5 \sqrt{n}\right\}$ different local solutions in $E_{n}, n \geqslant 4$. Moreover, examples are given of functions with at least six local solutions in E_{4} and exactly three global solutions in E_{3}.

Introduction

This paper is concerned with the uniform approximation of continuous functions on the interval $I=[-1,1]$ by exponential sums of degree $\leqslant n$, i.e., by elements of the space

$$
\begin{align*}
E_{n}:= & \left\{u(x)=\sum_{i=1}^{l} \sum_{j=0}^{m_{i}-1} a_{i j} x^{j} e^{t_{i} x}:\right. \\
& \left.l, m_{i} \in \mathbb{N}, a_{i j}, t_{i} \in \mathbb{R}, t_{1}<\cdots<t_{l}, \sum_{i=1}^{l} m_{i} \leqslant n\right\} . \tag{0.1}
\end{align*}
$$

It is known from [1] that for $n \geqslant 2$ best approximation (BA) may not be unique and that there may also exist local best approximations (LBAs). This gives rise to the question whether the number of LBAs is always finite and, if the answer is affirmative, what is the value of the number

$$
\begin{equation*}
c_{n}:=\sup _{f \in C(t)}\left\{\text { number of LBAs to } f \text { in } E_{n}\right\} . \tag{0.2}
\end{equation*}
$$

It is known from [2] and [6] that

$$
c_{n}=n, \quad n=1,2,3,
$$

and

$$
n \leqslant c_{n} \leqslant \frac{3}{2}(n-1)!, \quad n \geqslant 4
$$

In this paper we will partially fill this gap by proving the estimates

$$
\begin{aligned}
c_{n} & \geqslant 2+\frac{1}{2}(n-1)(n-2) \\
& \geqslant \max _{1 \leqslant i \leqslant|(n-1) / 2|}\binom{n-1-i}{i}, \quad n \geqslant 4 .
\end{aligned}
$$

The proof is by constructing special functions with the given number of LBAs. The first estimate is good for small values of n, whereas the second one shows that c_{n} grows faster than any polynomial of n when n tends to infinity.

In the case $n=4$ the above estimates can be improved:

$$
6 \leqslant c_{4} \leqslant 9
$$

Finally, we show the existence of a function with three global BAs in E_{3}, thus answering another open question (cf. [5]).

1. Preliminaries

The sign vectors of exponential sums (cf. Section 3 in [2]) play an important role in our investigations. Consider an exponential sum

$$
u(x)=\sum_{i=0}^{m-1} a_{i} x^{i} e^{t x}, \quad a_{m-1} \neq 0
$$

with only one characteristic number t. Let $s=\operatorname{sign} a_{m-1}$. Then the sign vector sign $(u) \in\{-1,1\}^{m}$ is given by

$$
\operatorname{sign}(u):=\left((-1)^{m-1} s,(-1)^{m-2} s, \ldots,-s, s\right) .
$$

Now let u_{1}, u_{2} be two exponential sums such that all characteristic numbers of u_{1} are smaller than each of u_{2}. Then the sign vector of $u_{1}+u_{2}$ is given by

$$
\operatorname{sign}\left(u_{1}+u_{2}\right):=\left(\operatorname{sign}\left(u_{1}\right), \operatorname{sign}\left(u_{2}\right)\right)
$$

Each vector $s \in\{-1,1\}^{n}$ specifies a sign class $E_{n}(s)$ of E_{n} :

$$
E_{n}(s):=\left\{u \in E_{n} \backslash E_{n-1}: \operatorname{sign}(u)=s\right\} .
$$

Moreover, E_{n}^{+}denotes the set of all positive exponential sums of degree $\leqslant n$
(cf. Section 5 in [2]). With the help of the sign vectors one can formulate a Descartes rule (cf. Theorem 3.2 in [2]).

Lemma 1.1. (Descartes rule). Let $u \in E_{k}, k \in \mathbb{N}$, satisfy

$$
(-1)^{i-1} u\left(x_{i}\right) \geqslant 0, \quad i=1,2, \ldots, r
$$

with $x_{1}<x_{2}<\cdots<x_{r}$ and $r \geqslant 2$. If $u \neq 0$ and $\operatorname{sign}(u)=\left(s_{1}, \ldots, s_{k}\right)$, then the sequence s_{1}, \ldots, s_{k} contains at least $r-1$ sign changes. Moreover, if the number of sign changes is exactly $r-1$, we have

$$
s_{1}=1 \quad \text { and } \quad s_{k}=(-1)^{r-1}
$$

We will frequently use the Descartes rule in the following form.
Remark 1.2. Let $f \in C(I)$ and $u \in E_{n}$. Assume that $f-u$ has an alternant of length k with sign σ on the right

$$
\sigma(-1)^{k-i}\left(f\left(x_{i}\right)-u\left(x_{i}\right)\right)=\|f-u\|, \quad i=1,2, \ldots, k
$$

Furthermore, let $v \in E_{m}$ be a better approximation to f than u. Then sign ($v-u$) contains at least $k-1$ sign changes. If the number of sign changes is exactly $k-1$, then the first and last component of $\operatorname{sign}(v-u)$ equal $(-1)^{k-1} \sigma$ and σ.

Another application of the Descartes rule is the following lemma (cf. Theorems 4.3, 4.5 in [2]).

Lemma 1.3. Let $u \neq 0$ be a best approximation to $f \in C(I)$ in E_{n} with simple characteristic numbers. Assume that the alternant of $f-u$ has a positive (negative) sign on the right. If v is an approximation to f at least as good as u, then $\operatorname{sign}(v)$ contains at least as many negative (positive) components as $\operatorname{sign}(u)$ and at least one more positive (negative) component than $\operatorname{sign}(u)$.

Another central concept is the standard construction of D. Braess (cf. Section 18 in [6]). Beginning with a known LBA to f in $E_{n-1}, n \geqslant 2$, it achieves a connected set $C p$ of E_{n} which contains exactly one LBA to f in E_{n} whenever $C p \cap E_{n-1}=\varnothing$. Given $\tau \in \mathbb{R}$, let

$$
E_{n}(\tau):=\left\{u \in E_{n}: \tau \in \operatorname{spect}(u) \text { or } u \in E_{n-1}\right\}
$$

be the closure of the subset of exponential sums of degree $\leqslant n$ with characteristic number τ. Here, spect (u) denotes the set of characteristic numbers of
u. Put $E_{0}:=\{0\}$. Let $u \in E_{n-1} \backslash E_{n-2}, n \geqslant 2$, and $\tau \notin \operatorname{spect}(u)$. Then the tangent cone to $E_{n}(\tau)$ at u is given by

$$
C_{u} E_{n}(\tau)=C_{u} E_{n-1}+\left\{\alpha e^{\tau x}: \alpha \in \mathbb{R}\right\}
$$

where $C_{u} E_{n-1}$ is the tangent cone to E_{n-1} at u (cf. [6]). The standerd construction now reads as follows.

Standard construction. Let $u \in E_{n-1} \backslash E_{n-2}, n \geqslant 2$, be a local best approximation in E_{n-1} and $\tau \notin \operatorname{spect}(u)$. Assume that $f-u$ has an alternant of exact length $n+l$, where l is the number of different characteristic numbers of u. Let $h \in C_{u} E_{n}(\tau)$ be a function with

$$
\|f-u-h\|<\|f-u\|
$$

and $\left\{u_{\lambda}: \lambda \in[0,1]\right\}$ be a continuous curve in $E_{n}(\tau)$ with

$$
\begin{equation*}
\left\|u_{\lambda}-u-\lambda h\right\|=o(\lambda) \quad \text { as } \quad \lambda \rightarrow 0 \tag{1.1}
\end{equation*}
$$

Then define $C p$ as the connected component of the level set $\left\{v \in E_{n}:\|f-v\|<\|f-u\|\right\}$ that contains the curve u_{λ} for sufficiently small $\lambda>0$.

The component $C p$ is well defined and depends only on u and on the connected component of $\mathbb{R} \backslash \operatorname{spect}(u)$ that contains τ (cf. Section 18 in $[6]$). If $C p$ does not intersect E_{n-1}, it contains exactly one LBA to f in E_{n}. (Otherwise it may be discarded, when all local solutions in E_{n} are to be determined.) We are mostly interested in the sign vector of this LBA. Write u according to (0.1)

$$
u(x)=\sum_{i=1}^{l} \sum_{j=0}^{m_{i}-1} a_{i j} x^{j} e^{t_{i} x}, \quad x \in I
$$

with $\sum_{i=1}^{l} m_{i}=n-1, a_{i m_{i}-1} \neq 0, i=1, \ldots, l$, and $t_{1}<\cdots<t_{l}$. Furthermore, put

$$
t_{0}:=-\infty, \quad t_{l+1}:=\infty
$$

and let

$$
\operatorname{sign}(u)=\left(s_{1}, \ldots, s_{n-1}\right)
$$

Then we can prove the following:

Theorem 1.4. Suppose that u satisfies the conditions for the standard construction. Let $i \in\{0,1, \ldots, l\}$ and $t_{i}<\tau<t_{i+1}$. Referring to (0.1) set

$$
j(i):=1+\sum_{k=1}^{i} m_{k}
$$

and let $C p$ be the connected set of E_{n} which is given by the standard construction applied to u with additional characteristic number τ. Then $C p$ contains an element $\tilde{u} \in E_{n} \backslash E_{n-1}$ whose sign vector sign $(\tilde{u})=\left(\tilde{s_{1}}, \ldots, \tilde{s}_{n}\right)$ is given by

$$
\begin{align*}
\tilde{s_{k}} & =s_{k}, & & 1 \leqslant k<j(i), \\
& =\sigma(-1)^{n+1-j(i)-i}, & & k=j(i), \\
& =s_{k-1}, & & j(i)<k \leqslant n, \tag{1.2}
\end{align*}
$$

where σ is the right sign of the alternant of $f-u$.
Proof. Since $f-u$ has an alternant of exact length $n+l$, the BA h to $f-u$ in the $n+l$ dimensional Haar subspace

$$
W:=\left\{\sum_{v=1}^{l} \sum_{u=0}^{m_{v}} \beta_{v \mu} x^{\mu} e^{t_{\nu} x}+\delta e^{\tau x}: \beta_{v \mu}, \delta \in \mathbb{R}\right\}
$$

of $C_{u} E_{n}(\tau)$ has the representation $h=\tilde{h}+\alpha e^{\tau x}$ with $\tilde{h} \in C_{u} E_{n-1}$ and $\alpha \neq 0$.
From Remark 1.2 and $h \in E_{n+l}$ we know that $\operatorname{sign}(h)$ contains exactly $n+l-1$ sign changes and that the last component equals σ. Since τ is the $j(i)+i$ th characteristic number of h, this yields

$$
\operatorname{sgn} \alpha=\sigma(-1)^{n+l-j(i)-i} .
$$

Since $\tilde{h} \in C_{u} E_{n-1}$ and $u \in E_{n-1} \backslash E_{n-2}$, there is a continuous curve $\left\{\tilde{u}_{\lambda}: \lambda \in[0,1]\right\}$ in $E_{n-1} \backslash E_{n-2}$ with

$$
\begin{equation*}
\left\|\tilde{u}_{\lambda}-u-\lambda \tilde{h}\right\|=o(\lambda) \quad \text { as } \quad \lambda \rightarrow 0 \tag{1.3}
\end{equation*}
$$

Because of the continuity we may assume that τ lies between the i th and $i+1$ st characteristic number of \tilde{u}_{λ} and that

$$
\operatorname{sign}\left(\tilde{u}_{\lambda}\right)=\operatorname{sign}(u), \quad \lambda \in[0,1] .
$$

This implies that the sign vector of

$$
u_{\lambda}:=\tilde{u}_{\lambda}+\alpha \lambda e^{\tau x}, \quad \lambda \in[0,1],
$$

satisfies (1.2) for every $\lambda \in(0,1]$. Moreover, (1.3) implies that $\left\{u_{\lambda}: \lambda \in[0,1]\right\}$ satisfies (1.1). Hence, $u_{\lambda} \in C p$ for sufficiently small $\lambda>0$.

2. A Quadratic Lower Bound for c_{n}

We introduce some families of functions we need for the proof of our estimates. Let $m \geqslant 2$ and $a \in \mathbb{R}$. Then we put

$$
\begin{equation*}
g_{m}(x):=\sum_{i=1}^{m} \exp \left(\left(-1+2 \frac{i-1}{m-1}\right) x\right) \in E_{m}^{+}, \quad x \in I=[-1,1] \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{m}(a ; x):=(-1)^{m-1} \cos \frac{2 m+1}{2} \pi x+a g_{m}(x), \quad x \in I . \tag{2.2}
\end{equation*}
$$

If no confusion may arise, we simply write f_{m} instead of $f_{m}(a ;$.).
The choice of the functions $f_{m}(a ;$.$) is rather arbitrary. We will only refer$ to the following two properties.
(i) $f_{m}-a g_{m}$ is an even function with a negative alternant of exact length $2 m+1$.
(ii) g_{m} is an even positive exponential sum of exact degree m.

Next, we need some sign classes. For ease of notation we denote by $s_{j, n} \in\{-1,1\}^{n}, 1 \leqslant j \leqslant n$, the sign vector with $n-1$ positive components whose j th component equals -1 .

Definition 2.1. Let $S_{m, n}, 2 \leqslant m<n \leqslant 2 m-1$, denote the set of all vectors $s=\left(s_{1}, \ldots, s_{n}\right) \in\{-1,1\}^{n}$ with the following properties.
(i) m components of s equal +1 and $n-m$ components equal -1 .
(ii) $s_{j}=-1$ implies $s_{j+1}=+1,1 \leqslant j \leqslant n-1$.
(iii) $s_{1}=s_{n}=+1$.

Definition 2.2. (a) For $m \geqslant 2$ let

$$
\hat{S}_{m, m+1}:=S_{m, m+1} \cup\left\{s_{1, m+1}, s_{m+1, m+1}\right\}
$$

(b) Let $\hat{S}_{m, m+2}, m \geqslant 2$, denote the set of all vectors $s \in\{-1,1\}^{m+2}$ which equal $s_{2, m+2}$ or $s_{m+1, m+2}$ or satisfy conditions (i) and (ii) of Definition 2.1 ©or $S_{m, m+2}$.

Now we can do the first step in the proof of the quadratic lower bound for c_{n}.

Lemma 2.3. Let $m \geqslant 2, N:=m+1$ and $a>0$. Each sign class $E_{N}(s), s \in \hat{S}_{m, N}$, contains a local best approximation $u_{N, s}=u_{N, s}(a ;$.$) to$ $f_{m}(a ;$.$) in E_{N}$ which satisfies the following conditions:
(i) $u_{N, s}$ is a best approximation to f_{n} in the closure $\overline{E_{N}(s)}$ of $E_{n}(s)$.
(ii) $\operatorname{spect}\left(u_{N, s}\right) \subset[-1,1]$ for every $s \in S_{m, N}$.
(iii) There is a number $\varepsilon_{1}>0$ such that the error curve $f_{m}(a ;)-.u_{N, s}(a ;$.$) has a negative alternant of exact length 2 m+1$ for every $a \in\left(0, \varepsilon_{1}\right)$ and $s \in S_{m, N}$. Moreover, $u_{N, s}(a ;$.$) has N-3$ characteristic numbers with multiplicity one and one with multiplicity three.

Proof. Since $f_{m}(a ; \cdot)-a g_{m}$ has a negative alternant of exact length $2 m+1$, we conclude from Theorem 6.1 in $[2]$ that $a g_{m} \in E_{m}^{+}$is the unique BA to $f_{m}(a ; \cdot)$ in E_{m} and satisfies the assumptions of Theorem 1.4 with $\sigma=-1$. Let $s \in \hat{S}_{m, N}$. Then $s=s_{j_{0}, N}$ for a suitable $j_{0} \in\{1, \ldots, N\}$. Let $t_{1}<\cdots<t_{m}$ be the characteristic numbers of $a g_{m}$ and

$$
t_{0}:=-\infty, \quad t_{m+1}:=+\infty
$$

When applying the standard construction to $a g_{m}$ with an additional characteristic number $\tau \in\left(t_{j_{0}-1}, t_{j_{0}}\right)$, by Theorem 1.4 we obtain a connected component C of the level set $\left\{v \in E_{N}:\left\|f_{m}-v\right\|<\left\|f_{m}-a g_{m}\right\|\right\}$ which intersects $E_{N}(s)$. Since $a g_{m}$ is the BA to $f_{m}(a ; \cdot)$ in E_{m}, we have

$$
C \cap E_{N-1}=C \cap E_{m}=\varnothing .
$$

From Satz 2 in [8] it is known that there exists a BA $u_{N, s}(a ; \cdot)$ to $f_{m}(a ; \cdot)$ in $\overline{E_{N}(s)}$. Since $C \subset E_{N}(s)$ already contains elements which are better approximations than the best one in E_{N-1}, it follows from $\overline{E_{N}(s)} \subset E_{N}(s) \cup E_{N-1}$ that $u_{N, s}(a ; \cdot) \in E_{N}(s)$. Hence, $u_{N, s}(a ; \cdot)$ is an LBA. Especially, we have

$$
\begin{equation*}
\left\|f_{m}(a ; \cdot)-u_{N, s}(a ; \cdot)\right\|<\left\|f_{m}(a ; \cdot)-a g_{m}\right\| . \tag{2.3}
\end{equation*}
$$

For the proof of (ii) let $s \in S_{m, N}$. Then $\operatorname{sign}\left(u_{N . s}(a ; \cdot)-a g_{m}\right)$ contains at most $m=N-1$ positive components. Therefore, from (2.3) and Remark 1.2 it follows that $\operatorname{sign}\left(u_{N, s}(a ; \cdot)-a g_{m}\right)$ contains exactly $2 m$ sign changes and that the first and last component are both negative. Hence the origin of these two components is $-a g_{m}$ and not $u_{N, s}(a ; \cdot)$. This yields

$$
\text { spect }\left(u_{N, s}(a ; \cdot)\right) \subset\left[t_{1}, t_{m}\right]=|-1,1|
$$

For the proof of (iii) we define

$$
u_{N, s}(0 ; x):=0, \quad x \in I, s \in S_{m, N}
$$

and prove that the function

$$
\begin{aligned}
& \phi:[0, \infty) \rightarrow C(I), \\
& \phi(a):=f_{m}(a ; \cdot)-u_{N . s}(a ; \cdot)
\end{aligned}
$$

is continuous at $a=0$ for every $s \in S_{m, N}$. (It is no drawback that $u_{N, s}(a ; \cdot)$ is not always unique.) Let $s \in S_{m, N}$ and $\left(a_{v}\right) \subset(0, \infty)$ be an arbitrary sequence with $\lim _{v \rightarrow \infty} a_{v}=0$. By standard arguments (2.3) implies the boundedness of $\left(\left\|u_{N, s}\left(a_{v} ; \cdot\right)\right\|\right)$. Since spect $\left(u_{N, s}\left(a_{v} ; \cdot\right)\right)$ is contained in the compact interval $[-1,1]$ for all $v \in \mathbb{N}$ we conclude with the same arguments as in [7] that a subsequence of ($u_{N, s}\left(a_{v} ; \cdot\right)$) converges uniformly on I to a function $v \in E_{N}$. From (2.3), we obtain

$$
\left\|f_{m}(0 ; \cdot)-v\right\| \leqslant\left\|f_{m}(0 ; \cdot)\right\| .
$$

This implies $v=0$ because zero is the unique BA to $f_{m}(0 ; \cdot)$ in E_{k} for every $k \leqslant 2 m$. Now the continuity of ϕ is obvious. The continuity of ϕ at $a=0$ for every $s \in S_{m, N}$ implies the existence of a number $\varepsilon_{1}>0$ such that the error curve $f_{m}(a ; \cdot)-u_{N, s}(a ; \cdot)$ has an alternant of length $2 m+1$ at most for every $a \in\left(0, \varepsilon_{1}\right)$ and $s \in S_{m, N}$ because this is true for $a=0$. By the same argument, this alternant has a negative sign on the right if it has the exact length $2 m+1$. By Theorem 6.1 in [2], $u_{N, s}(a ; \cdot)$ has at most $m-1$ distinct characteristic numbers. Since s contains exactly one negative component, $u_{N, s}(a ; \cdot)$, however, has at least $m-1$ different characteristic numbers. This implies assertion (iii) of the lemma.

The next step in the proof of the quadratic lower bound for c_{n} is the following:

Lemma 2.4. Let $m \geqslant 2, n:=m+2$ and $a \in\left(0, \varepsilon_{1}\right)$, where ε_{1} is chosen according to Lemma 2.3. Then each sign class $E_{n}(s), s \in \hat{S}_{m \cdot n}$, contains at least one local best approximation to $f_{m}(a ; \cdot)$ in E_{n}.
Proof. Let $s^{(1)}:=s_{1, m+1}$ and $s^{(2)}:=s_{m+1, m+1}$ be the two elements of $\hat{S}_{m, m+1} \backslash S_{m, m+1}$. First, we prove that the function $u_{n-1, s^{(1)}}$ satisfies the assumptions of Theorem 1.4 with $\sigma=-1$. The function $u_{n-1, s^{(1)}}$ cannot be even and has at least $m=n-2$ different characteristic numbers. This and the symmetry of f_{m} imply that $u_{n-1, s^{(1)}}$ is not the unique BA. From Theorem 6.1 in [2] we conclude that $f_{m}-u_{n-1, s^{(1)}}$ has an alternant of exact length $2 n-2$. The assertion concerning σ now follows immediately from the definition of $s^{(1)}$ and Theorem 12.3 in [3]. With the same arguments we can prove that $u_{n-1,5^{(2)}}$ satisfies the assymptions of Theorem 1.4 with $\sigma=+1$.
Now, let t_{0} be the smallest characteristic number of $u_{n-1, s^{(1)}}$ and $\tau<\min \left\{t_{0},-1\right\}$. When applying the standard construction to $u_{n-1, s^{(1)}}$ with additional characteristic number τ, we obtain a connected component C of the level set $\left\{v \in E_{n}:\left\|f_{m}-v\right\|<\left\|f_{m}-u_{n-1, s^{(u)}}\right\|\right\}$, which intersects $E_{n}\left(s_{2, n}\right)$. Let A denote the set of the elements of $E_{n}\left(s_{2, n}\right)$ with first characteristic number smaller than -1 . By construction

$$
\begin{equation*}
C \cap A \neq \varnothing \tag{2.4}
\end{equation*}
$$

Next, we want to prove

$$
\begin{equation*}
C \cap \partial A=\varnothing . \tag{2.5}
\end{equation*}
$$

Assume that $v \in C \cap \partial A$. Denote the smallest characteristic number of v by t. Let $\left(v_{n}\right) \subset C \cap A$ be a sequence which converges uniformly on every compact subset of $(-1,1)$ to v and let t_{n} denote the smallest characteristic number of v_{n}. We consider two cases.

Case 1. $v \in E_{n} \backslash E_{n-1}$. From Theorem 8.3 in [2] we know that $\lim _{n \rightarrow \infty} t_{n}=t$. This and $v \in \partial A$ imply $t=-1$. Thus we have $v-a g_{m} \in$ $E_{2 m+1}$. Moreover, we know from $a g_{m} \in E_{m}^{+}$and $v \in E_{n}\left(s_{2, n}\right)$ that the second component of $\operatorname{sign}\left(v-a g_{m}\right)$ is negative. Since $v \in C$ is a better approximation to f_{m} than $a g_{m}$, by Remark 1.2 this contradicts that $f_{m}-a g_{m}$ has a negative alternant of length $2 m+1$.

Case 2. $v \in E_{n-1}$. First we recall the following cancellation rule for the boundary of a sign class

$$
\begin{equation*}
\partial E_{n}\left(s_{1}, \ldots, s_{n}\right) \subset E_{n-2} \cup \bigcup_{j=1}^{n} E_{n-1}\left(s_{1}, \ldots, s_{j-1}, s_{j+1}, \ldots, s_{n}\right) . \tag{2.6}
\end{equation*}
$$

Especially we have

$$
v \in \partial E_{n}\left(s_{2, n}\right) \subset E_{n-1}\left(s_{1, n-1}\right) \cup E_{n-1}\left(s_{2, n-1}\right) \cup E_{n-1}^{+} \cup E_{n-2} .
$$

Moreover, v is a better approximation to f_{m} than $a g_{m}$ and $u_{n-1, s^{(1)}}$. We conclude from Lemma 1.3 that $v \notin E_{n-1}^{+} \cup E_{n-2}$ and from Lemma 2.3 that $v \notin \overline{E_{n-1}\left(s_{1, n-1}\right)}$. Thus, we have $v \in E_{n-1}\left(s_{2, \kappa-1}\right)$ and a subsequence of $\left(t_{n}\right)$ converges to t. Hence $t \leqslant-1$. With the same arguments as in the proof of Lemma 2.3(ii) we conclude from $v \in E_{n-1}\left(s_{2, n-1}\right)$ that $t \geqslant-1$ and $v-a g_{m} \in E_{2 m+1} \backslash E_{2 m}$. Hence $t=-1$. Because of (2.1) and $v \in E_{m+1}$ this is a contradiction to $v-a g_{m} \in E_{2 m+1} \backslash E_{2 m}$.

Thus (2.5) is proved. Since A is an open subset of E_{n} and C is connected, (2.4) and (2.5) imply

$$
C \subset A \subset E_{n} \backslash E_{n-1}
$$

Hence, C contains an LBA u to f_{m} in E_{n} and $\operatorname{sign}(u)=s_{2, n}$. Since f_{m} is an even function, $v(x):=u(-x)$ is also an LBA to f_{m} in E_{n}. Obviously, we have $\operatorname{sign}(v)=s_{n-1, n}$. To complete the proof of Lemma 2.4, we have to prove the existence of at least one LBA to f_{m} in each sign class $E_{n}(s)$ with $s \in \hat{S}_{m, n} \backslash\left\{s_{2, n}, s_{n-1, n}\right\}$. Let $E_{n}(s)$ be such a sign class. Then s contains exactly two negative components. Cancelling one of them we obtain two elements σ, σ^{\prime} of $\hat{S}_{m, n-1}$. Without loss of generality we may assume

$$
\begin{equation*}
\left\|f_{m}-u_{n-1, \sigma}\right\| \leqslant\left\|f_{m}-u_{n-1, \sigma^{\prime}}\right\| . \tag{2.7}
\end{equation*}
$$

σ may be obtained from s by canceling the j_{0} th component. Define the zeroth characteristic number of $u_{n-1, \sigma}$ as $-\infty$ and the nth one as $+\infty$. We apply the standard construction to $u_{n-1, \sigma}$ with an additional characteristic number between the $j_{0}-1$ st and j_{0} th one. (Note that we now count the characteristic numbers according to their multiplicity.) Doing this we obtain a connected component C of the set of all elements v in $E_{n}(s)$ satisfying

$$
\begin{equation*}
\left\|f_{m}-v\right\|<\left\|f_{m}-u_{n-1 . \sigma}\right\| . \tag{2.8}
\end{equation*}
$$

If $v \in C \cap \partial E_{n}(s)$, we have according to (2.6)

$$
\begin{gather*}
v \in E_{n-1}(\sigma) \cup E_{n-1}\left(\sigma^{\prime}\right) \cup E_{n-2}^{+} \cup\left\{u \in E_{n-1}: \operatorname{sign}(u)\right. \\
\text { contains at most } m-1 \text { positive components }\} . \tag{2.9}
\end{gather*}
$$

Since v is a better approximation to f_{m} than $a g_{m}$, we conclude from (2.8) and Lemma 1.3 that $v \in E_{n-1}(\sigma) \cup E_{n-1}\left(\sigma^{\prime}\right)$. This contradicts Lemma 2.3 because of (2.7) and (2.8). Hence, $C \cap \partial E_{n}(s)=\varnothing$ and C does not intersect E_{n-1}. This implies the existence of an LBA to f_{m} in $E_{n}(s)$.

Lemma 2.4 yields the inequality

$$
\begin{aligned}
c_{m+2} & \geqslant \# \hat{S}_{m, m+2} \\
& =2+\#\left(\hat{S}_{m, m+2} \backslash\left\{s_{2, n}, s_{n-1, n}\right\}\right) \\
& =2+\frac{1}{2} m \cdot(m+1), \quad m \geqslant 2 .
\end{aligned}
$$

As a consequence we get:

Theorem 2.5. The maximal number of local best approximations in $E_{n}, n \geqslant 4$, is at least

$$
\begin{equation*}
c_{n} \geqslant 2+\frac{1}{2}(n-1)(n-2) . \tag{2.10}
\end{equation*}
$$

3. An Exponential Lower Bound for c_{n}

In this section we prove the following lemma which has an exponentially increasing lower bound for c_{n} as an immediate consequence.

Lemma 3.1. Let $2 \leqslant m<n \leqslant 2 m-1$. There is a number $\varepsilon_{n}>0$ such that for every $a \in\left(0, \varepsilon_{n}\right)$ and $s \in S_{m, n}$ the function $f_{m}(a ; \cdot)$ has a local best approximation $u_{n, s}=u_{n, s}(a ; \cdot)$ in $E_{n}(s)$ which has the following properties.
(i) $u_{n, s}$ is a best approximation to f_{m} in $\overline{E_{n}(s)}$.
(ii) $\operatorname{spect}\left(u_{n, s}\right) \subset[-1,1]$.
(iii) The error curve $f_{m}-u_{n, s}$ has a negative alternant of exact length $2 m+1$. Moreover, $u_{n, s}$ has exactly $2 m-n$ different characteristic numbers and each has an odd multiplicity.

Proof. We prove Lemma 3.1 by induction on n. Since $S_{m, m+1} \subset \hat{S}_{m, m+1}$ we have already proved the case $n=m+1$ in Lemma 2.3. Assume that $m+1<n \leqslant 2 m-1$ and that the assertion of Lemma 3.1 is true for $S_{m, n-1}$. Let $s \in S_{m, n}$ and $a \in\left(0, \varepsilon_{n-1}\right)$. Cancelling one of the $n-m$ negative components of s, we obtain $n-m$ different elements $s^{(k)}, 1 \leqslant k \leqslant n-m$, of $S_{m, n-1}$. Without loss of generality we may assume that

$$
\begin{equation*}
\left\|f_{m}-u_{n-1, s^{(1)}}\right\|=\min _{1 \leqslant k \leqslant n-m}\left\|f_{m}-u_{\left.n-1, s^{(k)}\right)}\right\| . \tag{3.1}
\end{equation*}
$$

The vector $s^{(1)}$ may be obtained from s by cancelling the j_{0} th component. Since $s \in S_{m, n}$ we have $1<j_{0}<n$. Hence, we can apply the standard construction to $u_{n-1, s^{(1)}}$ with an additional characteristic number between the $j_{0}-1$ st and j_{0} th one. (Note that we now count the characteristic numbers according to their multiplicity.) Therefore, Theorem 1.4 yields the existence of a $v \in E_{n}(s)$ satisfying

$$
\begin{equation*}
\left\|f_{m}-v\right\|<\left\|f_{m}-u_{\left.n-1, s^{4}\right)}\right\| . \tag{3.2}
\end{equation*}
$$

From Satz 2 in [8] it is known that there exists a best approximation $u_{n, s}=u_{n, s}(a ; \cdot)$ to $f_{m}(a ; \cdot)$ in $\overline{E_{n}(s)}$. The induction hypothesis, (3.2) and $a g_{m} \in \frac{E_{n, 1}}{E_{n-1}\left(s^{(1)}\right)}$ imply

$$
\begin{equation*}
\left\|f_{m}-u_{n, s}\right\|<\left\|f_{m}-u_{n-1, s^{(u)}, \|}\right\| \leqslant\left\|f_{m}-a g_{m}\right\| . \tag{3.3}
\end{equation*}
$$

Since according to (2.6)

$$
\begin{aligned}
& \partial E_{n}(s) \subset \bigcup_{k=1}^{n-m} \overline{E_{n-1}\left(s^{(k)}\right) \cup\left\{v \in E_{n-1}: \operatorname{sign}(v)\right.} \\
& \quad \text { contains at most } m-1 \text { positive components }\}
\end{aligned}
$$

we conclude from (3.1), (3.3), the induction hypothesis and Lemma 1.3 that $u_{n, s} \in E_{n}(s)$. Hence, $u_{n, s}$ is an LBA. The proof of (ii) is completely analogous to the proof of Lemma 2.3(ii).

For the proof of (iii) we define for every $s \in S_{m, n}$

$$
u_{n, s}(0 ; x):=0, \quad x \in I,
$$

and

$$
\begin{aligned}
& \phi:\left[0, \varepsilon_{n-1}\right) \rightarrow C(I), \\
& \phi(a):=f_{m}(a ; \cdot)-u_{n, s}(a ; \cdot) .
\end{aligned}
$$

With the same arguments as in the proof of Lemma 2.3, we obtain the continuity of ϕ at $a=0$ for every $s \in S_{m, n}$. Thus there is a number $\varepsilon_{n} \in\left(0, \varepsilon_{n-1}\right)$ such that $f_{m}(a ; \cdot)-u_{n, s}(a ; \cdot)$ has at most an alternant of length $2 m+1$ for every $a \in\left(0, \varepsilon_{n}\right)$ and $s \in S_{m, n}$ because this is true for $a=0$. By the same argument, this alternant has a negative sign on the right if it has the exact length $2 m+1$. From Theorem 6.1 in [2] we conclude that $u_{n, s}(a ; \cdot)$ has at most $2 m-n$ different characteristic numbers. Because of Definition 2.1 (ii) we may split the sequence $s=\left(s_{1}, \ldots, s_{n}\right)$ into subsequences of the form $(+1,-1,+1, \ldots,-1,+1)$. The splitting is done between consecutive positive signs of s. Each subsequence has one more positive sign than negative ones. Hence, the splitting yields exactly $2 m-n$ subsequences. Therefore, each $v \in E_{n}(s)$ has at least $2 m-n$ different characteristic numbers. This completes the proof of Lemma 3.1.

As a consequence we obtain the exponentially increasing lower bound for c_{n}.

Theorem 3.2. The maximal number of local best approximations in $E_{n}, n \geqslant 4$, is at least

$$
\begin{equation*}
c_{n} \geqslant \max _{1 \leqslant i \leqslant|(n-1) / 2|}\binom{n-1-i}{i} \geqslant \frac{2^{(2 / 3) n}}{5 \sqrt{(2 / 3) n}} \tag{3.4}
\end{equation*}
$$

Proof. Let $n \geqslant 4, \quad 1 \leqslant i \leqslant\lceil(n-1) / 2\rceil$ and $m:=n-i$. Obviously $2 \leqslant m<n \leqslant 2 m-1$. From the preceding lemma we have $c_{n} \geqslant \# S_{m, n}$.

A simple combinatorial argument, however, shows

$$
\# S_{m, n}=\binom{m-1}{n-m}=\binom{n-1-i}{i}
$$

Here $i=n-m$. This proves the first inequality.
Now write $n-1=3 k+l$ with $k \in \mathbb{N}$ and $l \in\{0,1,2\}$. Then

$$
c_{n} \geqslant\binom{ n-1-k}{k}=\binom{2 k+l}{k}
$$

From Stirling's formula we obtain

$$
\binom{2 k+l}{k} \geqslant \frac{2^{2 k}}{\sqrt{2 k \pi}} \delta_{l}
$$

where

$$
\begin{aligned}
\delta_{l} & =1, & & l=0,1 \\
& =2, & & l=2 .
\end{aligned}
$$

This implies the second inequality for c_{n}.
For small values of n Theorem 2.5 gives a better lower bound for c_{n} than Theorem 3.2. The estimates of Theorem 3.2, however, show that c_{n} grows faster than any polynomial of n. In this context one has to notice that our technique can at best yield the estimate $c_{n} \geqslant 2^{n}$, because we identify the LBAs through their sign vector and cannot distinguish between different LBAs in the same sign class. Since the approximation of the function $\cos (\pi / 2) x$ shows that a sign class may contain more than one LBA (cf. [4]), our lower bounds probably are not sharp.

4. The Existence of a Function with Six Local Best Approximations in E_{4}

The results of Section 2 yield the estimate

$$
5 \leqslant c_{4} \leqslant 9
$$

In this section we will improve this by constructing a function with at least six LBAs in E_{4}.

Theorem 4.1. Let $a>(3.5 \pi)^{2}$. Then the function

$$
f(x):=\cos 3.5 \pi x+a(\cosh x-1), \quad x \in I
$$

has at least six LBAs in E_{4}.
Proof. The following diagram shows the sign classes containing an LBA to f in $E_{n}, 1 \leqslant n \leqslant 4$. The connecting arrows refer to the standard construction. The position in the diagram indicates the levels of the different LBAs.

Sign classes containing LBAs to $\cos 3.5 \pi x+a(\cosh x-1)$ in $E_{n}, 1 \leqslant n \leqslant 4$.
Obviously, we have

$$
\begin{aligned}
f^{\prime}(x) & =-3.5 \pi \sin 3.5 \pi x+a \sinh x \\
& \geqslant-(3.5 \pi)^{2} x+a x \geqslant 0, \quad x \geqslant 0 .
\end{aligned}
$$

Since f is an even function this implies

$$
\begin{align*}
& \min _{x \in I} f(x)=f(0)=1 \tag{4.1}\\
& \max _{x \in I} f(x)=f(-1)=f(1) .
\end{align*}
$$

Therefore, the BA to f in E_{1} is

$$
u^{(1)}(x):=\frac{1}{2}\{f(0)+f(1)\}, \quad x \in I .
$$

Because of (4.1) the error curve $f-u^{(1)}$ has a positive alternant of exact length three.

By Korollar 3 in [8] and Theorem 5.2 in [2], f has a unique BA $u^{(2)} \in E_{2}^{+} \backslash E_{1}$ in E_{2}. Since f is an even function $u^{(2)}$ has the representation

$$
u^{(2)}(x)=A \cosh T x, \quad x \in I
$$

with $A>0, T>0$.
By construction a $\cosh x-a \in E_{3}(+-+)$ is the unique BA to f in E_{3}. From Lemma 1.3 and Theorem 6.1 in [2], we conclude that $f-u^{(2)}$ has a negative alternant of exact length five. Hence, we can apply the standard construction to $u^{(2)}$. By standard arguments we then obtain the existence of
three LBAs $u_{1}^{(3)} \in E_{3}(-++), u_{2}^{(3)} \in E_{3}(+-+)$ and $u_{3}^{(3)} \in E_{3}(++-)$ in E_{3} with

$$
\begin{equation*}
\left\|f-u_{i}^{(3)}\right\|<\left\|f-u^{(2)}\right\|, \quad i=1,2,3 . \tag{4.2}
\end{equation*}
$$

Since $c_{3}=3$ (cf. [6]) there are no other LBAs to f in E_{3} and each $u_{i}^{(3)}, i=1$, 2,3 , is a BA to f in its sign class. Hence, $u_{2}^{(3)}$ is the unique BA given above. Moreover, we obtain from the symmetry of f that

$$
\begin{equation*}
\left\|f-u_{1}^{(3)}\right\|=\left\|f-u_{3}^{(3)}\right\| \tag{4.3}
\end{equation*}
$$

Since $u_{2}^{(3)}$ satisfies the assumptions of Theorem 1.4 with $\sigma=-1$, we can apply the standard construction to $u_{2}^{(3)}$. Recalling that $u_{2}^{(3)}$ is the unique global solution in E_{3}, we conclude the existence of at least one LBA to f in each of the three sign classes

$$
E_{4}(-+-+), \quad E_{4}(+--+), \quad E_{4}(+-+-)
$$

Now we turn our attention to the LBAs $u_{1}^{(3)}$ and $u_{3}^{(3)}$. The same arguments as in the proof of Lemma 2.4 yield that $u_{1}^{(3)}$ and $u_{3}^{(3)}$ have an alternant of minimal length and satisfy the assumptions of Theorem 1.4 with $\sigma=-1$ and $\sigma=+1$, resp.

Let us apply the standard construction to $u_{1}^{(3)}$ with an additional characteristic number greater than the greatest one of $u_{1}^{(3)}$. We obtain a connected component C of the level set $\left\{v \in E_{4}:\|f-v\|<\left\|f-u_{1}^{(3)}\right\|\right\}$ which intersects $E_{4}(-++-)$. From (4.2), (4.3) and Lemma 1.3 we conclude

$$
\begin{aligned}
C \cap \partial E_{4}(-++-) & =C \cap\left(E_{3}(++-) \cup E_{3}(-+-) \cup E_{3}(-++)\right) \\
& =\varnothing
\end{aligned}
$$

and hence by the connectedness $C \cap E_{3}=\varnothing$. This implies the existence of at least one LBA to f in $E_{4}(-++-)$.
iNow we apply the standard construction to $u_{1}^{(3)}$ with an additional characteristic number smaller than $\min \left\{t_{0},-T\right\}$, where t_{0} is the smallest characteristic number of $u_{1}^{(3)}$. By Theorem 1.4 we obtain a connected component C of the level set $\left\{v \in E_{4}:\|f-v\|<\left\|f-u_{1}^{(3)}\right\|\right\}$ which intersects the set A of the elements of $E_{4}(+-++)$ with smallest characteristic number smaller than $-T$. If we replace $f_{m}(a ; \cdot)$ by $f, a g_{m}$ by $u^{(2)}$ and -1 by $-T$ in the first part of the proof of Lemma 2.4, we conclude with the same arguments that

$$
C \subset A \subset E_{4} \backslash E_{3} .
$$

This implies the existence of an LBA u to f in $E_{4}(+-++)$. Since f is an even function, $u(-x) \in E_{4}(++-+)$ is also an LBA to f in E_{4}. This completes the proof.

5. The Existence of a Function with Three Global Best Approximations in E_{4}

In this secticn we establish the following:

Theorem 5.1. There is a continuous function with three global best approximations in E_{3}.

Proof. We consider the functions

$$
f(a ; x):=-\cos 2.5 \pi x+2 a \cosh x, \quad x \in I, a>0
$$

Since $\hat{S}_{2,3}$ consists of the three sign vectors

$$
s_{1}=(-1,+1,+1), \quad s_{2}=(+1,-1,+1), \quad s_{3}=(+1,+1,-1),
$$

we know from Lemma 2.3 that each sign class $E_{3}\left(s_{i}\right), i=1,2,3$, contains an LBA $u_{i}(a ; \cdot), a>0$, to $f(a ; \cdot)$ in E_{3}. Moreover, each $u_{i}(a ; \cdot)$ is a BA to $f(a ; \cdot)$ in $\overline{E_{3}\left(s_{i}\right)}$. Since $c_{3}=3$ there are no other LBAs to $f(a ; \cdot)$ in E_{3}. The symmetry of $f(a ; \cdot)$ and the definition of the sign classes, imply

$$
\begin{equation*}
\left\|f(a ; \cdot)-u_{1}(a ; \cdot)\right\|=\left\|f(a ; \cdot)-u_{3}(a ; \cdot)\right\|, \quad a>0 \tag{5.1}
\end{equation*}
$$

Furthermore, $u_{2}(a ; \cdot)$ has either the representation

$$
\begin{equation*}
u_{2}(a ; x)=A \cosh T x-B, \quad x \in I, \tag{5.2}
\end{equation*}
$$

or

$$
u_{2}(a ; x)=\alpha+\beta x^{2}, \quad x \in I
$$

where A, B, T, α, β depend on a. First we prove that

$$
\begin{equation*}
\left\|f\left(a_{0} ; \cdot\right)-u_{2}\left(a_{0} ; \cdot\right)\right\|<\left\|f\left(a_{0} ; \cdot\right)-u_{1}\left(a_{0} ; \cdot\right)\right\| \tag{5.3}
\end{equation*}
$$

for some $a_{0}>0$. Let h be the BA to $g(x):=-\cos 2.5 \pi x$ in the Haar space $V:=\operatorname{span}\left\{e^{-x}, 1, x, x^{2}, x^{3}, e^{x}\right\}$. Since g is even and has a negative alternant of exact length five, h has the representation

$$
h(x)=-2 a_{0} \cosh x+\alpha+\beta x^{2}
$$

with $a_{0}>0, \beta>0$. Hence

$$
g(x)-h(x)=f\left(a_{0} ; x\right)-\alpha-\beta x^{2}
$$

has an alternant of length seven and $\alpha+\beta x^{2} \in E_{3}(+-+)$ is the unique $B A$ to $f\left(a_{0} ; \cdot\right)$ in E_{3}. This yields (5.3).

Next we prove

$$
\begin{equation*}
\left\|f(2 ; \cdot)-u_{1}(2 ; \cdot)\right\|<\left\|f(2 ; \cdot)-u_{2}(2 ; \cdot)\right\| \cdot \tag{5.4}
\end{equation*}
$$

We have computed the LBAs to $f(2 ; \cdot)$ in E_{3} on the discrete set $X=\{-1+$ $(i-1) / 100: 1 \leqslant i \leqslant 201\}$. The numerical calculation yields

$$
\begin{aligned}
& v_{1}(x)=(a+b x) e^{t x}+c e^{s x}, \quad v_{3}(x)=v_{1}(-x) \\
& v_{2}(x)=\alpha+\beta x^{2}
\end{aligned}
$$

with

$$
\begin{array}{rlrl}
a & =0.899536, & b & =0.706562, \quad c=3.070845, \\
t & =-2.927102, & s=0.652912, & \\
\alpha & =3.993427, & \beta=2.108968
\end{array}
$$

and

$$
\begin{aligned}
& \max _{x \in X}\left|f(2 ; x)-v_{1}(x)\right|=0.970381, \\
& \max _{x \in X}\left|f(2 ; x)-v_{2}(x)\right|=0.993427
\end{aligned}
$$

By linear interpolation of $f(2 ; \cdot)-v_{1}$ we obiain

$$
\begin{equation*}
\left\|f(2 ; \cdot)-u_{1}(2 ; \cdot)\right\| \leqslant\left\|f(2 ; \cdot)-v_{1}(\cdot)\right\| \leqslant 0.9715 \tag{5.5}
\end{equation*}
$$

Now, let $y_{i}:=-0.8+(i-1) 0.4,1 \leqslant i \leqslant 5$. Considering round-off errors, we get

$$
(-1)^{i}\left\{f\left(2 ; y_{i}\right)-v,\left(y_{i}\right)\right\} \geqslant 0.9934, \quad 1 \leqslant i \leqslant 5
$$

Since $u_{2}(2 ; \cdot)$ has the representation (5.2) or $\left(5.2^{\prime}\right)$, this implies

$$
\begin{equation*}
\left\|f(2 ; \cdot)-u_{2}(2 ; \cdot)\right\| \geqslant 0.9934 \tag{5.6}
\end{equation*}
$$

Inequalities (5.5) and (5.6), however, prove (5.4). Now the map

$$
\begin{align*}
(0, \infty) \ni a \rightarrow & \left\|f(a ; \cdot)-u_{1}(a ; \cdot)\right\| \\
& -\left\|f(a ; \cdot)-u_{2}(a ; \cdot)\right\| \tag{5.7}
\end{align*}
$$

is continuous by Theorem 12.5 in [3], since $f(a ; \cdot)$ has exactly the three LBAs $u_{i}(a ; \cdot), i=1,2,3$, in E_{3} for every $a>0$. Since the function given in (5.7) has a zero between $a=a_{0}$ and $a=2$, the proof is complete.

References

1. D. Braess, Über die Approximation mit Exponentialsummen, Computing 2 (1967). 309-321.
2. D. Braess, Chebyshev approximation by γ-polynomials, J. Approx. Theory 9 (1973), 20-43.
3. D. Braess, Chebyshev approximation by γ-polynomials, II, J. Approx. Theory 11 (1974), 16-37.
4. D. Braess, On the number of best approximations in certain non-linear families of functions, Aequationes Math. 12 (1975), 184-199.
5. D. Braess, On rational L_{2}-approximation, J. Approx. Theory 18 (1976), 136-151.
6. D. Braess, Chebyshev approximation by γ-polynomials. III. On the number of best approximations, J. Approx. Theory 24 (1978), 119-145.
7. C. De Boor, On the approximation by γ-polynomials, in "Approximations with Special Emphasis on Spline Functions" (I. J. Schoenberg, Ed.), pp. 157-183, Academic Press, New York/London, 1969.
8. E. Schmidt, Zur Kompaktheit bei Exponentialsummen, J. Approx. Theory 3 (1970). 445-454.
